Pages

Kamis, 13 Desember 2012

BANGUN RUANG SISI LENGKUNG.

A. Tabung (Silinder)

1. Menghitung Luas Selimut dan Volume Tabung

Sebuah benda berbentuk tabung memiliki jari-jari r dan tinggi t. Jika kalian ingin membuat tabung dari kertas yang ukurannya tepat sama dengan ukuran benda tersebut, berapakah luas kertas yang kalian perlukan? Untuk menjawabnya, pelajari uraian materi berikut.
a. Luas Selimut
Dengan memerhatikan gambar 2.3, kita dapat mengetahui bahwa luas seluruh permukaan tabung atau luas sisi tabung merupakan jumlah dari luas alas ditambah luas selimut dan luas atap. Untuk lebih jelasnya perhatikan gambar jaring-jaring tabung sekali lagi.
Sehingga kita dapatkan rumus:
Image:bangun_Ruang_SS_Lengkung_6.jpg
b. Volume Tabung
Tabung merupakan pendekatan dari prisma segi-n, dimana n mendekati tak hingga. Artinya, jika rusuk-rusuk pada alas prisma diperbanyak maka akan membentuk sebuah tabung dimana hanya mendekati satu bidang alas, satu bidang atas dan satu sisi tegak. Karena alas dan tutup tabung berbentuk lingkaran maka volume tabung adalah perkalian luas daerah lingkaran alas dengan tinggi tabung.
Image:bangun_Ruang_SS_Lengkung_7.jpg

B. Kerucut

1. Unsur-unsur Kerucut dan Melukis Jaring-jaring Kerucut

Perhatikan gambar di samping. Pernahkan kalian melihat bangunan ini? Jika kita cermati bentuknya, bangunan tersebut merupakan refleksi dari bangun ruang dengan sisi lengkung yaitu kerucut.
a. Unsur-unsur Kerucut
Untuk lebih memahami unsur-unsur kerucut, dapat kita ilustrasikan seperti pada gambar 2.5 berikut.
Dengan mengamati gambar tersebut, kita dapat mengetahui unsur-unsur kerucut dengan melengkapi pernyataan berikut.
1) Tinggi kerucut = ….
2) Jari-jari alas kerucut = ….
3) Diameter alas kerucut = ….
4) Apotema atau garis pelukis = ….
b. Jaring-jaring Kerucut
Berdasarkan kegiatan dan gambar di atas kita ketahui bahwa kerucut tersusun dari dua bangun datar, yaitu lingkaran sebagai alas dan selimut yang berupa bidang lengkung (juring lingkaran). Kedua bangun datar yang menyusun kerucut tersebut disebut jaring-jaring kerucut. Perhatikan gambar berikut.
Gambar 2.6(a) menunjukkan kerucut dengan jari-jari lingkaran alas r, tinggi kerucut t, apotema atau garis pelukis s. Terlihat bahwa jaring-jaring kerucut terdiri atas dua buah bidang datar yang ditunjukkan gambar 2.6 (b) yaitu:
a. selimut kerucut yang berupa juring lingkaran dengan jari-jari s dan panjang busur 2πr,
b. alas yang berupa lingkaran dengan jari-jari r.

2. Menghitung Luas Selimut dan Volume Kerucut

Dapatkah kalian menghitung luas bahan yang diperlukan untuk membuat kerucut dengan ukuran tertentu? Perhatikan uraian berikut.
a. Luas Selimut
Dengan memerhatikan gambar, kita dapat mengetahui bahwa luas seluruh permukaan kerucut atau luas sisi kerucut merupakan jumlah dari luas juring ditambah luas alas yang berbentuk lingkaran. Untuk lebih jelasnya perhatikan jaring-jaring kerucut ini.
Image:bangun_Ruang_SS_Lengkung_14.jpg
Jadi luas juring TAA1 atau luas selimut kerucut dapat ditentukan.
Image:bangun_Ruang_SS_Lengkung_15.jpg
Karena luas selimut kerucut sama dengan luas juring TAA1 maka kita dapatkan:
Image:bangun_Ruang_SS_Lengkung_16.jpg
Sedangkan luas permukaan kerucut
= luas selimut + luas alas kerucut
= πrs + πr2
= πr (s + r)
Jadi
Image:bangun_Ruang_SS_Lengkung_17.jpg
dengan r = jari-jari lingkaran alas kerucut
s = garis pelukis (apotema)
b. Volume Kerucut
Kerucut dapat dipandang sebagai limas yang alasnya berbentuk lingkaran. Oleh karena itu kita dapat merumuskan volume kerucut sebagai berikut.
Image:bangun_Ruang_SS_Lengkung_18.jpg
Hubungan antara r, t dan apotema (s) adalah s2 = r2 + t2
c. Luas Selimut dan Volume Kerucut Terpancung
Image:bangun_Ruang_SS_Lengkung_21.jpg1) Luas selimut
Luas selimut kerucut terpancung adalah luas kerucut besar dikurangi luas selimut kerucut kecil. Kerucut besar ACC’ mempunyai tinggi t1, jari-jari r, dan apotema s1. Sedangkan kerucut kecil ABB’ mempunyai tinggi t2, jari-jari r2, dan apotema s2. Luas selimut kerucut terpancung adalah luas selimut kerucut besar dikurangi luas selimut kecil.

C. Bola

1. Unsur-unsur Bola

Perhatikan gambar berikut.
Suatu lingkaran diputar setengah putaran dengan diameter sebagai sumbu putarnya akan diperoleh bangun ruang seperti gambar 2.10 (b). Bentuk bangun yang demikian disebut bola dengan jari-jari bola r dan tinggi d.

2. Menghitung Luas Selimut dan Volume Bola

Jika jari-jari alas tabung tersebut r dan tingginya sama dengan diameter d, maka luas selimut atau sisi bola dengan jari-jari r adalah:
Image:bangun_Ruang_SS_Lengkung_28.jpg

D. Hubungan Volume Bangun Ruang Sisi Lengkung dengan Jari-jari

Pada rumus mencari volume bangun ruang sisi lengkung, semua tergantung pada unsur-unsur bangun tersebut, misalnya jari-jari dan tinggi bangun tersebut.

1. Perbandingan Volume Tabung, Kerucut, dan Bola karena Perubahan Jari-jari

a. Perbandingan Volume Tabung
Apabila ada dua buah tabung dengan tinggi yang sama, tetapi jari-jari berbeda, maka perbandingan kedua volume tabung sama dengan perbandingan kuadrat masing-masing jari-jarinya.
Image:bangun_Ruang_SS_Lengkung_33.jpg
Image:bangun_Ruang_SS_Lengkung_34.jpg
b. Perbandingan Volume pada Kerucut
Apabila ada dua buah kerucut dengan tinggi sama, tetapi jari-jari alasnya berbeda, maka perbandingan volume kedua kerucut dengan perbandingan kuadrat masing-masing jari-jarinya.
Image:bangun_Ruang_SS_Lengkung_35.jpg
c. Perbandingan Volume pada Bola
Apabila ada dua buah bola dengan jari-jari yang berbeda, maka perbandingan volumenya sama dengan perbandingan di pangkat tiga dan masing-masing jari-jarinya.
Image:bangun_Ruang_SS_Lengkung_36.jpg
Image:bangun_Ruang_SS_Lengkung_37.jpg

2. Selisih Volume Tabung, Kerucut, dan Bola karena Perubahan Jari-jari

a. Selisih Volume pada Tabung
Sebuah tabung dengan jari-jari lingkaran alas r1 dan tinggi t diperbesar sehingga jari-jari lingkaran alas menjadi r2 dengan r2 > r1 dan tinggi tetap. Maka berlaku:
Image:bangun_Ruang_SS_Lengkung_40.jpg
b. Selisih Volume pada Kerucut
Sebuah kerucut dengan jari-jari lingkaran alas r1 dan tinggi t diperbesar sehingga jari-jari lingkaran alas menjadi r2 dengan r2 > r1 dan tinggi tetap. Berlaku:
Image:bangun_Ruang_SS_Lengkung_41.jpg
Jadi selisih volumenya:
Image:bangun_Ruang_SS_Lengkung_42.jpg
dengan r1 = jari- jari awal r2 = jari-jari setelah diperbesar Bagaimana jika jari-jari kerucut diperpanjang sebesar k satuan? Ternyata berlaku r2 = r1 + k, sehingga:
Image:bangun_Ruang_SS_Lengkung_43.jpg
c. Selisih Volume pada Bola
Sebuah bola dengan jari-jari r1 diperbesar sehingga jarijarinya menjadi r2 dengan r2 > r1. Berlaku:
Image:bangun_Ruang_SS_Lengkung_44.jpg
Jadi selisih volumenya:
Image:bangun_Ruang_SS_Lengkung_45.jpg
dengan r1 = jari-jari awal, r2 = jari-jari setelah diperbesar
Bagaimana jika jari-jari bola diperpanjang sebesar k satuan? Ternyata berlaku r2 = r1 + k, sehingga:
Image:bangun_Ruang_SS_Lengkung_46.jpg
Tidak ada Komentar »

Segitiga-Segitiga yang Kongruen


Pengertian Segitiga yang Kongruen

Gambar:segienam.jpg
Pengubinan pada lantai yang telah kita kenal dapat digunakan untuk memahami pengertian kongruen. Pola pengubinan yang kita gunakan adalah pengubinan bangun segitiga. Perhatikan Gambar disamping Jika dilakukan pergeseran atau pemutaran terhadap salah satu ubin maka segitiga tersebut akan menempati ubin yang lain dengan tepat. Keadaan tersebut menunjukkan bahwa ubin yang satu dengan ubin yang lain mempunyai bentuk sama (sebangun) dan mempunyai ukuran yang sama. Segitiga-segitiga yang mempunyai bentuk dan ukuran yang sama disebut segitiga-segitiga yang kongruen (sama dan sebangun).

Sifat-Sifat Dua Segitiga yang Kongruen

Gambar:sigitiga 7.jpg
Untuk dapat memahami sifat-sifat dua segitiga yang kongruen, perhatikan Gambar diatas ini. Karena segitiga-segitiga yang kongruen mempunyai bentuk dan ukuran yang sama maka masing-masing segitiga jika diimpitkan akan tepat saling menutupi satu sama lain.
Gambar di samping menunjukkan ∆, PQT dan ∆ QRS kongruen. Perhatikan panjang sisi-sisinya. Tampak bahwa PQ = QR, QT = RS. dan QS = PT sehingga sisi-sisi yang bersesuaian dari kedua segitiga sama panjang.
Selanjutnya, perhatikan besar sudut-sudutnya. Tampak bahwa ﮮ TPQ = ﮮ SQR, ﮮ PQT = ﮮ QRS , dan ﮮ PTQ = ﮮ QSR sehingga sudut-sudut yang bersesuaian dari kedua segitiga tersebut sama besar.
Dari uraian di atas. dapat disimpulkan sebagai berikut.
Dua buah segitiga dikatakan kongruen jika dan hanya jika memenuhi sifat-sifat berikut.
  1. Sisi-sisi yang bersesuaian sama panjang.
  2. Sudut-sudut yang bersesuaian sama besar.

Syarat Dua Segitiga Kongruen

Dua segitiga dikatakan kongruen jika dipenuhi salah satu dari tiga syarat berikut.
  1. Ketiga pasang sisi yang bersesuaian sama panjang (sisi, sisi, sisi).
  2. Dua sisi yang bersesuaian sama panjang dan sudut yang dibentuk oleh sisi-sisi itu sama besar (sisi, sudut, sisi).
  3. Dua sudut yang bersesuaian sama besar dan sisi yang menghubungkan kedua titik sudut itu sama panjang (sudut, sisi, sudut).
  • Ketiga Pasang Sisi yang Bersesuaian Sama Panjang (Sisi, Sisi, Sisi)
Dua segitiga di bawah ini, yaitu ∆ ABC dan ∆ DEF mempunyai panjang sisi-sisi yang sama.
Gambar:sigitiga 8.jpg
Gambar:16.jpg
Perbandingan yang senilai untuk sisi-sisi yang bersesuaian menunjukkan bahwa kedua segitiga tersebut sebangun. Karena sebangun maka sudut-sudut bersesuaian juga sama besar, yaitu ﮮ A= ﮮ D, ﮮ B= ﮮ E,dan ﮮ C= ﮮ F.
Karena sisi-sisi yang bersesuaian sama panjang dan sudut-sudut yang bersesuaian sama besar maka ∆ ABC dan ∆ DEF kongruen.
  • Dua Sisi.yang Bersesuaian Sama Panjang dan Sudut yang Dibentuk oleh Sisi-Sisi itu Samar Besar (Sisi, Sudut, Sisi)
Gambar:sigitiga 9.jpg
Pada gambar di atas, diketahui bahwa AB = DE, AC = DF, dan ﮮ CAB = ﮮ EDF. Apakah ∆ ABC dan ∆ DEF kongruen? Jika dua segitiga tersebut diimpitkan maka akan tepat berimpit sehingga diperoleh :
Gambar:17.jpg
Hal ini berarti ∆ ABC dan ∆ DEF sebangun sehingga diperoleh
ﮮA = ﮮD, ﮮB = ﮮ E, dan ﮮC = ﮮE Karena sisi-sisi yang bersesuaian sama panjang, maka ∆ ABC dan ∆ DEF kongruen.
  • Dua Sudut yang Bersesuaian Sama Besar dan Sisi yang Menghubungkan Kedua Sudut itu Sama Panjang (Sudut, Sisi. Sudut)
Gambar:sigitiga 10.jpg
Pada gambar di atas, ∆ ABC dan ∆ DEF mempunyai sepasang sisi bersesuaian yang sama panjang dan dua sudut bersesuaian yang sama besar, yaitu AB = DE, ﮮ A = ﮮ D. Dan ﮮB = ﮮE. Karena ﮮA = ﮮD dan ﮮB =ﮮE maka ﮮC = ﮮF. Jadi. ∆ ABC dan ∆ DEF sebangun. Karena sebangun maka sisi-sisi yang bersesuaian rnempunyai perbandingan yang senilai.
Gambar:18a.jpg
Contoh:
Perhatikan gambar layang-layang pada Gambar. Sebutkan pasangan segitiga-segitiga yang kongruen!
Jawab:
Pasangan segi tiga-segi tiga yang kongruen adalah :
∆ AED dengan ∆ ABE:
∆ DEC dengan ∆ BEC:
∆ ACD dengan ∆ ABC.
a) ∆ AED kongruen dengan ∆ ABE
Bukti; Karena ∆ ABD sama kaki dan AE adalah garis bagi maka diperoleh AD = AB (diketahui)
ﮮ DAE = ﮮ BAE
AE = AE (berimpit)
Maka terbukti bahwa ∆ AED kongruen dengan ∆ ABE. (Sisi, Sudut, Sisi)
b) ∆ DEC kongruen dengan ∆ BEC
Bukti; Karena ∆ BCD sama kaki dan CE adalah garis bagi maka diperoleh CD = CB (diketahui)
ﮮ DCE = ﮮ BCE
CE = CE (berimpit)
Jadi. terbukti bahwaA DEC kongruen dengan L ABE. (Sisi. Sudut. Sisi)
∆ ACD konsruen dengan ∆ ABC

Menghitung Panjang Sisi dan Besar Sudut Segitiga-Segitiga kongruen

Dengan menggunakan sifat-sifat dua segitiga yang kongruen dapat ditentukan sisi-sisi yang sama panjang dan sudut-sudut yang sama besar.
Contoh:
Perhatikan Gambar
Diketahui ∆ KNM kongruen dengan ∆ NLM! Panjang KN = 5 cm, KM = l0 cm, ﮮ NKM = 60′. Tentukan panjang sisi dan sudut yang belum diketahui!
Jawab:
Karena ∆ KNM dan ∆ NLM kongruen maka KM = ML = l0 cm dan NL = KN = 5 cm. Dengan demikian, panjang MN dapat ditentukan dengan menggunakan dalil Pythagoras.
Gambar:19.jpg
Tidak ada Komentar »

KESEBANGUNAN BANGUN DATAR


Dua Bangun Datar yang Sebangun

Perhatikan Gambar Persegi panjang ABCD dan PQRSmempunyai sisi-sisi yang bersesuaian, yaitu
Gambar:kotak.jpg Gambar:kotak2.jpg
Gambar:1.jpg
Panjang sisi kedua persegi panjang tersebut mempunyai perbandingan yang senilai.
Gambar:2.jpg
Dengan demikian, sisi-sisi yang bersesuaian dari kedua persegi panjang mempunyai perbandingan yang sama, yaitu
Gambar:3.jpg
Keempat sudut dari persegi panjang ABCD dan PQRS adalah 90″ sehingga kedua persegi panjang tersebut mempunyai sudut-sudut yang bersesuaian sama besar, yaitu
ﮮ A = ﮮP, ﮮ B = ﮮQ, ﮮC = ﮮ R. dan ﮮ D = ﮮ S
Dapat dikatakan bahrva persegi panjang ABCD sebangun dengan persegi panjang PORS dan ditulis ABCD ~ PQRS.
Dua bangun datar dikatakan sebangun jika memenuhi dua syarat berikut.
  1. Panjang sisi-sisi yang bersesuaian mempunyai perbandingan yang senilai.
  2. Sudut-sudut yang bersesuaian sama besar.

Dua Bangun yang Sama dan Sebangun

Perhatikan dua lembar uang kertas yang nilainya sama. Misalnya Rp.5.000.00. Apakah uang tersebut panjang dan lebarnya sama?
Coba hitunglah perbandingan dari masing-masing sisi-sisinya. Kamu akan memperoleh nilai perbandingan sisi-sisinya sama dengan 1.
Dari hasil perbandingan di atas diperoleh :
  1. sisi-sisi yang bersesuaian dari uangtersebut sarna panjang.
  2. sudut-sudut yang bersesuaian dari uang tersebut sama besar (90o).
Jadi, kedua uang tersebut mempunyai bentuk dan ukuran yang sama. Bangun-bangun yang mempunyai bentuk dan ukuran yang sama disebut bangun-bangun yang kongruen, yakni bangun-bangun yang sama dan sebangun. Bangun-bangun yang kongruen jika diimpitkan akan saling menutupi satu sama lain.
Dua bangun bersisi lurus dikatakan kongruen jika :
  1. sisi-sisi yang bersesuaian dari bangun tersebut sama panjang:
  2. sudut-sudut yang bersesuaian dari bangun tersebut sama besar

Menghitung Panjang Salah Satu Sisi yang Belum Diketahui dari Dua Bangun yang Sebangun

Kita dapat menggunakan sifat dari dua bangun datar yang sebangun. yaitu perbandingan panjang sisi yang bersesuaian senilai untuk menghitung panjang salah satu sisi yang belum diketahui dari dua bangun yang sebangun.
Contoh :
Diketahui dua bangun datar di bawah sebangun. Tentukan nilai x dan y !
Gambar:te.jpg
Jawab :
Perbandingan sisi yang bersesuaian yang diketahui adalah 21/9 = 7/3 maka sisi yang lain juga harus mempunyai perbandingan yang sama. Nilai x dan y dapat diperoleh dari perbandingan di atas, yaitu :
Gambar:5.jpg
Jadi, x = 3 cm dan y = 6 cm.


SEGITIGA-SEGITIGA YANG SEBANGUN


Syarat Segitiga-Segitiga Sebangun

Pada Gambar dibawah tampak dua segitiga, yaitu ∆ ABC dan ∆ DEF. Perbandingan panjang sisi-sisi yang bersesuaian pada kedua segitiga tersebut adalah sebagai berikut:  Gambar:segitiga.jpg Dengan demikian, diperoleh : Gambar:6.jpg
Ukurlah sudut-sudut dari kedua segitiga itu dan bandingkan hasil pengukuranmu untuk sudut-sudut yang bersesuaian, yaitu ﮮ A dengan ﮮ D. ﮮ B dengan ﮮ E, dan ﮮ C dengan ﮮF Jika pengukuranmu benar kamu akan memperoleh hasil ﮮ A = ﮮ D ﮮ B = ﮮ E.dan ﮮ C = ﮮ F.
Karena sisi-sisi yang bersesuaian mempunyai perbandingan yang senilai dan sudut yang bersesuaian sama besar maka ∆ ABC dan ∆ DEF sebangun.
Jadi. kesebangunan dua segitiga dapat diketahui cukup dengan menunjukkan bahwa perbandingan panjang sisi-sisi yang bersesuaian senilai. Lakukan pengukuran panjang sisi-sisi dari kedua segitiga tersebut dan bandingkan hasil pengukuranmu untuk sisi-sisi yang bersesuaian. Karena sisi-sisi yang bersesuaian mempunyai perbandingan yang sama dan sudut yang bersesuaian sama besar Maka ∆ ABC sebangun dengan ∆ DEF. Jadi. kesebangunan dua segitiga dapat diketahui cukup dengan menunjukkan bahwa sudut-sudut yang bersesuaian sama besar.
Dari uraian di atas, dapat disimpulkan sebagai berikut.
Dua segitiga dikatakan sebangun jika memenuhi salah satu syarat berikut :
  1. Perbandingan panjang sisi-sisi yang bersesuaian senilai.
  2. Dua pasang sudut yang bersesuaian yang sama besar.

Kesebangunan Khusus dalam Segitiga Siku-Siku

Dalam segitiga siku-siku terdapat kesebangunan khusus. Perhatikan gambar di samping. Pada segitiga siku-siku di bawah.
Gambar:sigitiga 2.jpg
a AD2 = BD x CD;
b. AB2 = BD x BC;
c. AC2 = CD x CB.
Contoh :
Pada gambar di bawah diketahui AB = 6 cm dan BC. Tentukan
a. AC;
b. AD;
c. BD.
Gambar:sigitiga 3.jpg
Jawab:
a. AC2 = AB2+BC2
= 62 + 82
= 36+64
= 100
AC = √100 = 10
b. AB2 = AD x AC
62 = AD x 10
36 = AD x l0
AD =36/10
= 3,6 cm
DC = l0 cm – 3,6cm
= 6,4 cm
c. BD2 = AD x DC
= 3,6 x 6,4
= 23,04
BD = √23,04 = 4,8 cm

Menghitung Panjang Salah Satu Sisi yang Belum Diketahui dari Dua Segitiga yang Sebangun

Konsep kesebangunan dua segitiga dapat digunakan untuk menghitung panjang salah satu sisi segitiga sebangun yang belum diketahui. Coba perhatikan contoh berikut! Contoh :
Gambar:sigitiga 4.jpg Diketahui ∆ ABC sebangun dengan ∆ DEF. Tentukan EF ?
jawab:
Gambar:10.jpg

Garis-Garis Sejajar pada Sisi Segitiga

Pada Gambar Dibawah, ∆ ABC dan ∆ DEC sebangun. Berikut akan ditentukan perbandingan ruas garis dari kedua segitiga tersebut.
Perhatikan Gambar dibawah.
Gambar:sigitiga 5.jpg
Dari gambar tersebut terlihat bahwa ruas garis .DE // AB sehingga diperoleh
ﮮ ACB = ﮮ DCE (berimpit)
ﮮ CAB = ﮮ CDE (sehadap)
Karena dua sudut yang bersesuaian dari ∆ ABC dan ∆ DEC sama besar maka kedua segitiga itu sebangun. Karena sebansun maka berlaku
Gambar:11.jpg
Kedua ruas dikalikan (a + d)(c + b) sehingga diperoleh
Gambar:12a.jpg
Contoh:
Gambar:sigitiga 6.jpg Dalam ∆ PRT, PT//QS, hitunglah QR dan ST!
Jawab :
Gambar:13.jpg

Menyelesaikan Soal Cerita yang Berkaitan dengan Kesebangunan

Konsep dan sifat-sifat kesebangunan dapat digunakan untuk menyelesaikan masalah-masalah atau soal cerita yang berkaitan dengan kesebangunan. Untuk menyelesaikan soal cerita dapat dibantu dengan membuat sketsa atau gambar. Dari gambar itu, baru
diselesaikan.
Contoh:
Sebuah kawat baja dipancangkan untuk menahan sebuah tiang listrik yang berdiri tegak lurus. Sebuah tongkat didirikan tegak lurus sehingga ujung atas tongkat menyentuh kawat. Diketahui panjang tongkat 2 m, jarak tongkat ke ujung bawah kawat 3 m dan jarak tiang listrik ke tongkat 6 m. Berapa tinggi tiang listrik?
Jawab:
Misalnya, tinggi tiang listrik adalah t sehingga diperoleh perbandingan sebagai berikut.
Gambar:14.jpg
Gambar:15.jpg
Jadi, tinggi listrik adalah 6 cm

Tidak ada komentar: